Week 7

7.1 Classification of cyclic groups

Example 7.1.1. Let $H = \{r_0, r_1, r_2, \dots, r_{n-1}\}$ be the subgroup of D_n consisting of all rotations, where r_1 denotes the anti-clockwise rotation by the angle $2\pi/n$, and $r_k = r_1^k$. Then, H is isomorphic to $\mathbb{Z}_n = (\mathbb{Z}_n, +_n)$.

Proof. Define $\phi : H \longrightarrow \mathbb{Z}_n$ as follows:

$$\phi(r_1^k) = \overline{k}, \quad k \in \mathbb{Z},$$

where \overline{k} denotes the remainder of the division of k by n.

The map ϕ is well defined: If $r_1^k = r_1^{k'}$, then $r_1^{k-k'} = e$, which implies that $n = |r_1|$ divides k - k'. Hence, $\overline{k} = \overline{k'}$ in \mathbb{Z}_n .

For $i, j \in \mathbb{Z}$, we have $r_1^i r_1^j = r_1^{i+j}$; hence:

$$\phi(r_1^i r_1^j) = \phi(r_1^{i+j}) = \overline{i+j} = i +_n j = \phi(r_1^i) +_n \phi(r_1^j).$$

This shows that ϕ is a homomorphism. It is clear that ϕ is surjective, which then implies that ϕ is one-to-one, for the two groups have the same size. Hence, ϕ is a bijective homomorphism, i.e. an isomorphism.

In fact:

Theorem 7.1.2. Any infinite cyclic group is isomorphic to $(\mathbb{Z}, +)$. Any cyclic group of finite order *n* is isomorphic to $(\mathbb{Z}_n, +_n)$.

Proof. Write $G = \langle g \rangle$. Suppose $|G| = \infty$. Consider the map

$$\phi: \mathbb{Z} \to G, \quad k \mapsto g^k.$$

 ϕ is a homomorphism because $\phi(k_1 + k_2) = g^{k_1+k_2} = g^{k_1} \cdot g^{k_2} = \phi(k_1) \cdot \phi(k_2)$. ϕ is injective because $\phi(k_1) = \phi(k_2)$ implies that $g^{k_1} = g^{k_2}$ which forces $k_1 = k_2$ as $|g| = \infty$. ϕ is surjective because G is generated by g. We conclude that ϕ is an isomorphism.

If $|G| = n < \infty$, Claim 2.1.2 says that we can write

$$G = \langle g \rangle = \{e, g, g^2, \dots, g^{n-1}\}.$$

Consider the bijection

$$\phi: G \to \mathbb{Z}_n, \quad g^i \mapsto i.$$

We have

$$\begin{split} \phi(g^{i_1} \cdot g^{i_2}) &= \phi(g^{i_1+i_2}) \\ &= \begin{cases} \phi(g^{i_1+i_2}) & \text{if } i_1+i_2 < n, \\ \phi(g^{i_1+i_2-n}) & \text{if } i_1+i_2 \ge n \\ &= \begin{cases} i_1+i_2 & \text{if } i_1+i_2 < n, \\ i_1+i_2-n & \text{if } i_1+i_2 \ge n \\ &= \phi(g^{i_1}) + \phi(g^{i_2}), \end{cases} \end{split}$$

so ϕ is an isomorphism.

So for any $n \in \mathbb{Z} \cup \{\infty\}$, there is a unique (up to isomorphism) cyclic group of order n. In particular, we have the following:

Corollary 7.1.3. If G and G' are two finite cyclic groups of the same order, then G is isomorphic to G'.

For example, the multiplicative group of m-th roots of unity

$$U_m = \{ z \in \mathbb{C} : z^m = 1 \} = \{ 1, \zeta_m, \zeta_m^2, \dots, \zeta_m^{m-1} \},\$$

where $\zeta_m = e^{2\pi i/m} = \cos(2\pi/m) + i \sin(2\pi/m) \in \mathbb{C}$, is cyclic of order m. So it is isomorphic to \mathbb{Z}_m , and an isomorphism is given by

$$\phi: \mathbb{Z}_m \longrightarrow U_m, \quad k \mapsto \zeta_m^k.$$

7.2 Rings

Definition. A ring R (or $(R, +, \cdot)$) is a set equipped with two binary operations:

$$+, \cdot : R \times R \to R$$

which satisfy the following properties:

- 1. (R, +) is an abelian group.
- 2. (a) The multiplication \cdot is associative, i.e.

$$(a \cdot b) \cdot c = a \cdot (b \cdot c)$$

for all $a, b, c \in R$.

- (b) There is an element $1 \in R$ (called the *multiplicative identity*) such that $1 \cdot a = a \cdot 1 = a$ for all $a \in R$.
- 3. (Distributive laws:)
 - (a) $a \cdot (b+c) = a \cdot b + a \cdot c$ and
 - (b) $(a+b) \cdot c = a \cdot c + b \cdot c$

for all $a, b, c \in R$.

Example 7.2.1. The following sets, equipped with the usual operations of addition and multiplication, are rings:

- 1. $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$.
- 2. $\mathbb{Z}[x]$, $\mathbb{Q}[x]$, $\mathbb{R}[x]$, $\mathbb{C}[x]$ (Polynomials with integer, rational, real, complex coefficients, respectively.)
- 3. $\mathbb{Q}[\sqrt{2}] = \{\sum_{k=0}^{n} a_k(\sqrt{2})^k : a_k \in \mathbb{Q}, n \in \mathbb{N}\} = \{a + b\sqrt{2} : a, b \in \mathbb{Q}\}.$
- 4. For a fixed n, the set of $n \times n$ matrices with integer coefficients.
- 5. $C[a,b] = \{f : [a,b] \to \mathbb{R} : f \text{ is continuous.}\}$
- 6. $(\mathbb{N}, +, \cdot)$ is *not* a ring because $(\mathbb{N}, +)$ is not a group.

Remark. • For convenience's sake, we often write ab for $a \cdot b$.

- In the definition, commutativity is required of addition, but not of multiplication.
- Every element has an additive inverse, but *not necessarily* a multiplicative inverse. That is, there may be an element a ∈ R such that ab ≠ 1 for all b ∈ R.

Proposition 7.2.2. In a ring *R*, there is a unique additive identity and a unique multiplicative identity.

Proof. We already know that the additive identity is unique.

Suppose there is an element $1' \in R$ such that 1'r = r or all $r \in R$, then in particular 1'1 = 1. But 1'1 = 1' since 1 is a multiplicative identity element, so 1' = 1.

Proposition 7.2.3. For any r in a ring R, its additive inverse -r is unique. That is, if r + r' = r + r'' = 0, then r' = r''.

If r has a multiplicative inverse, then it is also unique. That is, if rr' = 1 = r'rand rr'' = 1 = r''r, then r' = r''.

Proposition 7.2.4. For all elements r in a ring R, we have 0r = r0 = 0.

Proof. By distributive laws,

$$0r = (0+0)r = 0r + 0r$$

Adding -0r (additive inverse of 0r) to both sides, we have:

$$0 = (0r + 0r) + (-0r) = 0r + (0r + (-0r)) = 0r + 0 = 0r.$$

The proof of r0 = 0 is similar and we leave it as an exercise.

Proposition 7.2.5. *For all elements r in a ring, we have* (-1)(-r) = (-r)(-1) = r.

Proof. We have:

$$0 = 0(-r) = (1 + (-1))(-r) = -r + (-1)(-r).$$

Adding r to both sides, we obtain

$$r = r + (-r + (-1)(-r)) = (r + -r) + (-1)(-r) = (-1)(-r).$$

We leave it as an exercise to show that (-r)(-1) = r.

Proposition 7.2.6. For all r in a ring R, we have: (-1)r = r(-1) = -r

Proof. Exercise

Proposition 7.2.7. If R is a ring in which 1 = 0, then $R = \{0\}$. That is, it has only one element.

We call such an R the **zero ring**.

Proof. Exercise.

Definition. A ring R is said to be commutative if ab = ba for all $ab \in R$.

- **Example 7.2.8.** \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} are all commutative rings, so are $\mathbb{Z}[x]$, $\mathbb{Q}[x]$, $\mathbb{R}[x]$, $\mathbb{C}[x]$.
 - For a fixed natural number n > 1, the ring of $n \times n$ matrices with integer coefficients, under the usual operations of addition and multiplication, is not commutative.

 \square

Modulo *m* **arithmetic**

Example 7.2.9. Let m be a positive integer. Consider the set

$$\mathbb{Z}_m = \{0, 1, 2, \dots, m-1\}$$

For any integer $n \in \mathbb{Z}$, we denote by \overline{n} the remainder of the division of n by m: n = mq + r.

On the other hand, two integers $a, b \in \mathbb{Z}$ are said to be **congruent modulo** m, denoted as $a \equiv b \mod m$, if $m \mid (a - b)$. This defines an equivalence relation on \mathbb{Z} , and \mathbb{Z}_m can be regarded as parametrizing the equivalence classes, namely, every $a \in \mathbb{Z}$ is congruent modulo m to exactly one element in \mathbb{Z}_m .

Remark. Congruence modulo m is exactly the same as the relation defined by the subgroup $m\mathbb{Z} < \mathbb{Z}$, so the above partition is the same as that given by cosets of $m\mathbb{Z}$ in \mathbb{Z} .

We equip \mathbb{Z}_m with addition $+_m$ and multiplication \cdot_m defined as follows: For $a, b \in \mathbb{Z}_m$, let:

$$a +_m b = \overline{a + b},$$
$$a \cdot_m b = \overline{a \cdot b},$$

where the addition and multiplication on the right are the usual addition and multiplication for integers.

Proposition 7.2.10. With addition and multiplication thus defined, \mathbb{Z}_m is a commutative ring.

Proof. 1. We already know that $(\mathbb{Z}_m, +_m)$ is an abelian group.

2. Note that If $a \equiv a' \mod m$ and $b \equiv b' \mod m$, then $ab \equiv a'b' \mod m$. So for $r_1, r_2 \in \mathbb{Z}_m$, we have

$$\overline{r_1 r_2} \equiv r_1 r_2 \equiv \overline{r_1} \cdot \overline{r_2} \equiv \overline{\overline{r_1} \cdot \overline{r_2}} \mod m.$$

For $a, b, c \in \mathbb{Z}_m$, we have:

$$a \cdot_m (b \cdot_m c) = a \cdot_m \overline{bc} = \overline{a} \cdot \overline{bc} = a(bc),$$

which by the associativity of multiplication for integers is equal to:

$$\overline{(ab)c} = \overline{\overline{ab} \cdot \overline{c}} = \overline{\overline{ab}} \cdot {}_m c = (a \cdot {}_m b) \cdot {}_m c.$$

So, \cdot_m is associative.

- 3. Exercise: We can take 1 to be the multiplicative identity.
- 4. For $a, b \in \mathbb{Z}_m$, $a \cdot_m b = \overline{a \cdot b} = \overline{b \cdot a} = b \cdot_m a$. So \cdot_m is commutative.
- 5. Lastly, we need to prove distributivity. For $a, b, c \in \mathbb{Z}_m$, we have:

$$a \cdot_m (b + mc) = \overline{\overline{a} \cdot \overline{b + c}} = \overline{\overline{a} \cdot (b + c)} = \overline{\overline{ab + ac}} = \overline{\overline{ab} + \overline{ac}} = a \cdot_m b + ma \cdot_m c.$$

It now follows from the distributivity from the left, proven above, and the commutativity for \cdot_m , that distributivity from the right also holds:

$$(a +_m b) \cdot_m c = a \cdot_m c + b \cdot_m c.$$