
Week 7

7.1 Classification of cyclic groups
Example 7.1.1. Let H = {r0, r1, r2, . . . , rn−1} be the subgroup of Dn consisting

of all rotations, where r1 denotes the anti-clockwise rotation by the angle 2π/n,

and rk = rk1 . Then, H is isomorphic to Zn = (Zn,+n).

Proof. Define φ : H −→ Zn as follows:

φ(rk1) = k, k ∈ Z,

where k denotes the remainder of the division of k by n.

The map φ is well defined: If rk1 = rk
′

1 , then rk−k
′

1 = e, which implies that

n = |r1| divides k − k′. Hence, k = k′ in Zn.

For i, j ∈ Z, we have ri1r
j
1 = ri+j

1 ; hence:

φ(ri1r
j
1) = φ(ri+j

1 ) = i+ j = i+n j = φ(ri1) +n φ(r
j
1).

This shows that φ is a homomorphism. It is clear that φ is surjective, which then

implies that φ is one-to-one, for the two groups have the same size. Hence, φ is a

bijective homomorphism, i.e. an isomorphism.

In fact:

Theorem 7.1.2. Any infinite cyclic group is isomorphic to (Z,+). Any cyclic
group of finite order n is isomorphic to (Zn,+n).

Proof. Write G = 〈g〉.
Suppose |G| =∞. Consider the map

φ : Z→ G, k �→ gk.

φ is a homomorphism because φ(k1 + k2) = gk1+k2 = gk1 · gk2 = φ(k1) · φ(k2).
φ is injective because φ(k1) = φ(k2) implies that gk1 = gk2 which forces k1 = k2
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as |g| =∞. φ is surjective because G is generated by g. We conclude that φ is an

isomorphism.

If |G| = n <∞, Claim 2.1.2 says that we can write

G = 〈g〉 = {e, g, g2, . . . , gn−1}.

Consider the bijection

φ : G→ Zn, gi �→ i.

We have

φ(gi1 · gi2) = φ(gi1+i2)

=

{
φ(gi1+i2) if i1 + i2 < n,
φ(gi1+i2−n) if i1 + i2 ≥ n

=

{
i1 + i2 if i1 + i2 < n,
i1 + i2 − n if i1 + i2 ≥ n

= φ(gi1) + φ(gi2),

so φ is an isomorphism.

So for any n ∈ Z ∪ {∞}, there is a unique (up to isomorphism) cyclic group

of order n. In particular, we have the following:

Corollary 7.1.3. If G and G′ are two finite cyclic groups of the same order, then
G is isomorphic to G′.

For example, the multiplicative group of m-th roots of unity

Um = {z ∈ C : zm = 1} = {1, ζm, ζ2m, . . . , ζm−1m },

where ζm = e2πi/m = cos(2π/m) + i sin(2π/m) ∈ C, is cyclic of order m. So it

is isomorphic to Zm, and an isomorphism is given by

φ : Zm −→ Um, k �→ ζkm.

7.2 Rings
Definition. A ring R (or (R,+, ·)) is a set equipped with two binary operations:

+, · : R×R→ R

which satisfy the following properties:
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1. (R,+) is an abelian group.

2. (a) The multiplication · is associative, i.e.

(a · b) · c = a · (b · c)

for all a, b, c ∈ R.

(b) There is an element 1 ∈ R (called the multiplicative identity) such that

1 · a = a · 1 = a for all a ∈ R.

3. (Distributive laws:)

(a) a · (b+ c) = a · b+ a · c and

(b) (a+ b) · c = a · c+ b · c
for all a, b, c ∈ R.

Example 7.2.1. The following sets, equipped with the usual operations of addition

and multiplication, are rings:

1. Z, Q, R, C.

2. Z[x], Q[x], R[x], C[x] (Polynomials with integer, rational, real, complex

coefficients, respectively.)

3. Q[
√
2] = {∑n

k=0 ak(
√
2)k : ak ∈ Q, n ∈ N} = {a+ b

√
2 : a, b ∈ Q}.

4. For a fixed n, the set of n× n matrices with integer coefficients.

5. C[a, b] = {f : [a, b]→ R : f is continuous.}
6. (N,+, ·) is not a ring because (N,+) is not a group.

Remark. • For convenience’s sake, we often write ab for a · b.
• In the definition, commutativity is required of addition, but not of multipli-

cation.

• Every element has an additive inverse, but not necessarily a multiplicative

inverse. That is, there may be an element a ∈ R such that ab �= 1 for all

b ∈ R.

Proposition 7.2.2. In a ring R, there is a unique additive identity and a unique
multiplicative identity.
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Proof. We already know that the additive identity is unique.

Suppose there is an element 1′ ∈ R such that 1′r = r or all r ∈ R, then in

particular 1′1 = 1. But 1′1 = 1′ since 1 is a multiplicative identity element, so

1′ = 1.

Proposition 7.2.3. For any r in a ring R, its additive inverse −r is unique. That
is, if r + r′ = r + r′′ = 0, then r′ = r′′.

If r has a multiplicative inverse, then it is also unique. That is, if rr′ = 1 = r′r
and rr′′ = 1 = r′′r, then r′ = r′′.

Proposition 7.2.4. For all elements r in a ring R, we have 0r = r0 = 0.

Proof. By distributive laws,

0r = (0 + 0)r = 0r + 0r

Adding −0r (additive inverse of 0r) to both sides, we have:

0 = (0r + 0r) + (−0r) = 0r + (0r + (−0r)) = 0r + 0 = 0r.

The proof of r0 = 0 is similar and we leave it as an exercise.

Proposition 7.2.5. For all elements r in a ring, we have (−1)(−r) = (−r)(−1) =
r.

Proof. We have:

0 = 0(−r) = (1 + (−1))(−r) = −r + (−1)(−r).
Adding r to both sides, we obtain

r = r + (−r + (−1)(−r)) = (r +−r) + (−1)(−r) = (−1)(−r).
We leave it as an exercise to show that (−r)(−1) = r.

Proposition 7.2.6. For all r in a ring R, we have: (−1)r = r(−1) = −r
Proof. Exercise
Proposition 7.2.7. If R is a ring in which 1 = 0, then R = {0}. That is, it has
only one element.

We call such an R the zero ring.

Proof. Exercise.

Definition. A ring R is said to be commutative if ab = ba for all ab ∈ R.

Example 7.2.8. • Z, Q, R, C are all commutative rings, so are Z[x], Q[x],
R[x], C[x].

• For a fixed natural number n > 1, the ring of n × n matrices with integer

coefficients, under the usual operations of addition and multiplication, is not

commutative.
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Modulo m arithmetic
Example 7.2.9. Let m be a positive integer. Consider the set

Zm = {0, 1, 2, . . . ,m− 1}.
For any integer n ∈ Z, we denote by n the remainder of the division of of n by

m: n = mq + r.

On the other hand, two integers a, b ∈ Z are said to be congruent modulo m,

denoted as a ≡ b mod m, if m | (a − b). This defines an equivalence relation

on Z, and Zm can be regarded as parametrizing the equivalence classes, namely,

every a ∈ Z is congruent modulo m to exactly one element in Zm.

Remark. Congruence modulo m is exactly the same as the relation defined by

the subgroup mZ < Z, so the above partition is the same as that given by cosets

of mZ in Z.

We equip Zm with addition +m and multiplication ·m defined as follows: For

a, b ∈ Zm, let:

a+m b = a+ b,

a ·m b = a · b,
where the addition and multiplication on the right are the usual addition and mul-

tiplication for integers.

Proposition 7.2.10. With addition and multiplication thus defined, Zm is a com-
mutative ring.

Proof. 1. We already know that (Zm,+m) is an abelian group.

2. Note that If a ≡ a′ mod m and b ≡ b′ mod m, then ab ≡ a′b′ mod m.

So for r1, r2 ∈ Zm, we have

r1r2 ≡ r1r2 ≡ r1 · r2 ≡ r1 · r2 mod m.

For a, b, c ∈ Zm, we have:

a ·m (b ·m c) = a ·m bc = a · bc = a(bc),

which by the associativity of multiplication for integers is equal to:

(ab)c = ab · c = ab ·m c = (a ·m b) ·m c.

So, ·m is associative.
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3. Exercise: We can take 1 to be the multiplicative identity.

4. For a, b ∈ Zm, a ·m b = a · b = b · a = b ·m a. So ·m is commutative.

5. Lastly, we need to prove distributivity. For a, b, c ∈ Zm, we have:

a·m(b+mc) = a · b+ c = a · (b+ c) = ab+ ac = ab+ ac = a·mb+ma·mc.

It now follows from the distributivity from the left, proven above, and the

commutativity for ·m, that distributivity from the right also holds:

(a+m b) ·m c = a ·m c+ b ·m c.
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